Pievienot darbus Atzīmētie0
Darbs ir veiksmīgi atzīmēts!

Atzīmētie darbi

Skatītie0

Skatītie darbi

Grozs0
Darbs ir sekmīgi pievienots grozam!

Grozs

Reģistrēties

interneta bibliotēka
Atlants.lv bibliotēka
4,49 € Ielikt grozā
Gribi lētāk?
Identifikators:938220
 
Vērtējums:
Publicēts: 17.11.2016.
Valoda: Krievu
Līmenis: Augstskolas
Literatūras saraksts: 13 vienības
Atsauces: Nav
SatursAizvērt
Nr. Sadaļas nosaukums  Lpp.
  Введение    2
1.  Транспортная задача. Общая постановка, цели, задачи. Основные типы, виды моделей    4
2.  Методы решения транспортной задачи    14
2.1.  Диагональный метод, или метод северо-западного угла    14
2.2.  Метод минимального элемента    15
2.3.  Метод наименьшей стоимости    18
2.4.  Метод аппроксимации Фогеля    21
2.5.  Метод потенциалов    21
  Заключение    23
  Список литературы    25
Darba fragmentsAizvērt

ЗАКЛЮЧЕНИЕ

В работе изложены основные подходы и методы решения транспортной задачи, являющейся одной из наиболее распространенных задач линейного программирования. Решение данной задачи позволяет разработать наиболее рациональные пути и способы транспортирования товаров, устранить чрезмерно дальние, встречные, повторные перевозки. Все это сокращает время продвижения товаров, уменьшает затраты предприятий и фирм, связанные с осуществлением процессов снабжения сырьем, материалами, топливом, оборудованием и т.д.
Алгоритм и методы решения транспортной задачи могут быть использованы при решении некоторых экономических задач, не имеющих ничего общего с транспортировкой груза. В этом случае величины тарифов cij имеют различный смысл в зависимости от конкретной экономической задачи. К таким задачам относятся следующие:
- оптимальное закрепление за станками операций по обработке деталей. В них cij является таким экономическим показателем, как производительность. Задача позволяет определить, сколько времени и на какой операции нужно использовать каждый из станков, чтобы обработать максимальное количество деталей. Так как транспортная задача требует нахождения минимума, то значения cij берутся с отрицательным знаком;
- оптимальные назначения, или проблема выбора. Имеется m механизмов, которые могут выполнять m различных работ с производительностью cij. Задача позволяет определить, какой механизм и на какую работу надо назначить, чтобы добиться максимальной производительности;
- задача о сокращении производства с учетом суммарных расходов на изготовление и транспортировку продукции;
- увеличение производительности автомобильного транспорта за счет минимизации порожнего пробега. Уменьшение порожнего пробега сократит количество автомобилей для перевозок, увеличив их производительность;
- решение задач с помощью метода запрещения перевозок. …

Autora komentārsAtvērt
Parādīt vairāk līdzīgos ...

Atlants

Izvēlies autorizēšanās veidu

E-pasts + parole

E-pasts + parole

Norādīta nepareiza e-pasta adrese vai parole!
Ienākt

Aizmirsi paroli?

Draugiem.pase
Facebook

Neesi reģistrējies?

Reģistrējies un saņem bez maksas!

Lai saņemtu bezmaksas darbus no Atlants.lv, ir nepieciešams reģistrēties. Tas ir vienkārši un aizņems vien dažas sekundes.

Ja Tu jau esi reģistrējies, vari vienkārši un varēsi saņemt bezmaksas darbus.

Atcelt Reģistrēties