-
Studiju darbs ķēžu teorijā
Nr. | Sadaļas nosaukums | Lpp. |
Ievads | 1 | |
Darba uzdevums | 2 | |
1. | Stāvokļa mainīgo metode | 3 |
1.1. | Teorētiskais pamatojums | 3 |
1.2. | Shēma un dati | 4 |
1.3. | Kirhofa likumi | 4 |
1.4. | Stāvokļu mainīgo vienādojumu sistēma | 5 |
1.5. | Stāvokļu mainīgo vienādojumu sistēma ar skaitliskām vērtībām | 7 |
2. | Laplasa transformācijas | 12 |
2.1. | Teorētiskais pamatojums | 12 |
2.2. | Ieejas signāla attēla izveidošana | 13 |
2.3. | Pārvades funkcijas iegūšana | 13 |
2.4. | Laplasa transformācijas grafiki | 15 |
3. | Kompozīcijas rēķini | 18 |
3.1. | Teorētiskais pamatojums | 18 |
3.2. | Kompozīcijas rēķinu grafiki | 18 |
4. | PSpice modelēšana | 22 |
Secinājumi | 26 | |
Izmantotā literatūra | 27 | |
Pielikums | 28 |
Šajā studiju darbā mēs apskatīsim, kā ar dažādām metodēm aprēķināt izejas spriegumu ķēdei. Apskatītās metodes ir: Stāvokļu Mainīgo Metode, Laplasa Transformācijas, Kompozīcijas Rēķini un PSpice modelēšana. Pēc šo metožu pielietošanas secināsim, kura no šīm visām ir precīzāka un kura ir vispraktiskākā, un visvieglāk pielietojamā.
Izpildot šo studiju darbu, mēs iegūsim jaunas zināšanas ķēžu aprēķinos un iemācīsimies aprēķināt ķēdes ar jebkuriem ķēdes elementiem un ieejas signāliem.
1.1. Teorētiskais pamatojums
Šajā uzdevumā aprēķināsim ķēdes reakciju uz ieejas signālu, izmantojot stāvokļa mainīgo metodi.
Ja shēma bez rezistīviem elementiem satur arī induktīvus un kapacitatīvus elementus, tad vienādojumu sistēma attiecībā uz meklējamām strāvām nav algebriska. Izskatot vienādojumus, kurus sastāda saskaņā Kirhofa likumiem, spriegumu kritumus uz induktīviem un kapacitatīviem elementiem ar strāvām zaros un , strāva atrodas zem integrāļa vai diferenciāļa zīmes. Šādus vienādojumus sauc par integro-diferenciālvienādojumiem. Aprēķināt strāvas no šādas vienādojumu sistēmas matemātiski ir ļoti sarežģīti. Tādēļ cenšas izveidot vienādojumu sistēmu, kurā nezināmā funkcija sastopama vai nu brīvā veidā vai zem atvasinājuma zīmes. Šādas vienādojumu sistēmas sauc par diferenciālvienādojumu sistēmām. Lai ķēžu analīzes uzdevumu novestu uz diferenciālvienādojumu sistēmu risināšanu, par meklējamām elektriskiem lielumiem nevar izvēlēties strāvas visos zaros. Ir jāizvēlas cita elektrisko lielumu sistēma. Šādu sistēmu veido shēmas stāvokļa mainīgie. Par stāvokļa mainīgiem sauc elektriskos lielumus, kuri nosaka ķēdē uzkrāto enerģiju. Ķēdē enerģija var uzkrāties induktīvos un kapacitatīvos elementos. Signāls ejot caur rezistīvu ķēdi savu formu nemaina, jo tajā enerģija neuzkrājas. Ieejas signāla izmaiņām momentā seko izejas signāla izmaiņas…
Šajā studiju darbā mēs apskatīsim, kā ar dažādām metodēm aprēķināt izejas spriegumu ķēdei. Apskatītās metodes ir: Stāvokļu Mainīgo Metode, Laplasa Transformācijas, Kompozīcijas Rēķini un PSpice modelēšana. Pēc šo metožu pielietošanas secināsim, kura no šīm visām ir precīzāka un kura ir vispraktiskākā, un visvieglāk pielietojamā. Izpildot šo studiju darbu, mēs iegūsim jaunas zināšanas ķēžu aprēķinos un iemācīsimies aprēķināt ķēdes ar jebkuriem ķēdes elementiem un ieejas signāliem.
- Elektrotehnikas pamati. Studiju darbs
- Elektrotehnikas teorētiskie pamati
- Studiju darbs ķēžu teorijā
-
Tu vari jebkuru darbu ātri pievienot savu vēlmju sarakstam. Forši!Studiju darbs ķēžu teorijā
Referāts augstskolai13
-
Kursa darbs elektriskajos mērījumos
Referāts augstskolai13
Novērtēts! -
Sinusoidālas strāvas lineāro ķēžu pētīšana
Referāts augstskolai24
-
Sinusoidālas strāvas lineāro ķēžu pētīšana
Referāts augstskolai28
-
Kursa darbs datorgrafikā
Referāts augstskolai10