Dabā ražošanas faktori ir ierobežoti. Tādēļ tie ir jākombinē tā, lai iegūtu no tiem maksimālo ražošanas apjomu, kuru var saražot uzņēmums. Tātad veidojas sakarība starp kādu ražotās preces daudzumu z un dažādiem ražošanas faktoriem – x,y,...,n. Šo sakarību varam pierakstīt šādi:
z=f(x,y,...,n) (1)
Ja mainās tikai viens no ražošanas faktoriem, tad ražošanas funkciju var rakstīt:
z=f(x) (2)Taču, ja mainās divi vai vairāki ražošanas faktori, tad tā ir daudzfaktoru ražošanas funkcija. Aplūkosim funkciju, kura ir atkarīga tikai no 2 ražošanas faktoriem x un y:
z=f(x;y) (3)
Izpētīsim šīs ražošanas funkcijas īpašības īsumā:
Ražošanas funkcija ir uzskatāma par definētu visos gadījumos, nav svarīgi, cik ražošanas faktori ir fiksēti un cik mainīgi. Vienīgais ražošanas funkcijas ierobežojums ir paši ražošanas faktori, to īpašības un pielietojums. Ražošanas funkcija ir nepārtraukta funkcija ar nepārtrauktiem mainīgajiem – tā ir gluda.
Ražošanas faktori var būt kapitāls, zeme u.c. Taču neviens no ražošanas faktoriem nevar būt ar negatīvu zīmi, tāpēc ražošanas funkcijas mainīgajiem noteikti jābūt nenegatīviem. Savukārt tas, ka x un y pieder reālo skaitļu kopai nozīmē, ka ražošanas faktori var būt bezgalīgi dalāmi arvien mazākās un mazākās vienībās. Aplūkosim piemēru, kurā ražošanas faktors ir nedalāms lielums. Tātad paņemsim ražošanas faktoru skrūve un produktu automašīna. Dabiski, ka nevaram lietot tādu ražošanas faktora vienību kā pus skrūve vai ceturtdaļskrūve. Tātad būtu loģiski pret skrūvēm attiekties kā pret naturālām vienībām. …