Pievienot darbus Atzīmētie0
Darbs ir veiksmīgi atzīmēts!

Atzīmētie darbi

Skatītie0

Skatītie darbi

Grozs0
Darbs ir sekmīgi pievienots grozam!

Grozs

Reģistrēties

interneta bibliotēka
Atlants.lv bibliotēka
Akcijas un īpašie piedāvājumi 2 Atvērt
12,99 € Ielikt grozā
Gribi lētāk?
Identifikators:886789
 
Autors:
Vērtējums:
Publicēts: 23.12.2007.
Valoda: Latviešu
Līmenis: Augstskolas
Literatūras saraksts: 15 vienības
Atsauces: Ir
SatursAizvērt
Nr. Sadaļas nosaukums  Lpp.
  Ievads    4
1.  Neironu tīklu apmācības teorija    6
1.1.  Neironu tīklu struktūra    6
1.1.1.  Bioloģiskie un mākslīgie neironu tīkli    6
1.1.2.  Bioloģiskie neironu tīkli    8
1.1.3.  Tehniskā neirona modelis    10
1.1.4.  Neironu tīklu veidi    11
1.2.  Mākslīgo neironu tīklu apmācības algoritmi    16
1.2.1.  Neironu tīklu apmācības uzdevuma formulējums un iespējamie risinājumu ceļi    16
1.2.2.  Neironu tīkls apmācības laikā    19
1.2.3.  Apmācības paradigmas    20
1.2.4.  Atgriezeniskās izplatīšanas algoritms    25
1.3.  Neironu tīklu pamatparadigmas    32
1.3.1.  Pretimnākošās izplatīšanas tīkls    32
1.3.2.  Maksimuma meklēšanas tīkls ar tiešiem sakariem    37
1.3.3.  Gausa klasifikators    40
1.3.4.  Ieejas zvaigzne    42
1.3.5.  Izejas zvaigzne    44
2.  Neironu tīklu darba matemātiskā modelēšana    46
2.1.  Neironu tīkla darbības matemātiskā modelēšanas uzdevuma izvirzīšana    46
2.2.  Modelējošās programmas funkcijas    49
2.2.1.  Funkciju vispārējs apraksts    49
2.2.2.  Lietotāja interfeiss    52
3.  Neironu tīklu izmantošana    60
3.1.  Aritmētisko un loģisko operāciju izpildīšana izmantojot neironu tīklu    60
3.1.1.  Loģiskā VAI realizācija neironu tīklā    60
3.1.2.  Loģiskā UN realizācija neironu tīklā    61
3.1.3.  Izslēdzošā VAI izpilde neironu tīklā    63
3.1.4.  Skaitļu saskaitīšanas operācijas realizācija binārajā skaitīšanas sistēmā neironu tīklā    64
3.1.5.  Aritmētiskās saskaitīšanas operācijas realizācija neironu tīklā    66
3.2.  Pasta indeksa ciparu atpazīšana    69
3.3.  Trigonometrisko funkciju vērtību aprēķināšana izmantojot neironu tīklu    71
3.4.  Neironu tīkla apmācīšana prognozēt trigonometrisko funkciju sekojošās vērtības pēc uzdotajām iepriekšējām vērtībām    73
3.5.  Trenda pagriešanās atpazīšanas uzdevums    74
  Nobeigums    76
  Izmantotās literatūras saraksts    78
  Pielikums    80
Darba fragmentsAizvērt

Neironu tīkli - tie ir skaitļošanas modeļi, kuri balstās principiem, līdzīgiem smadzeņu uzbūves principiem, un kuri paredzēti smadzeņu risināmo problēmu atrisināšanai. Zīdītājiem bioloģiskie neironu tīkli ir formēti no neironiem, kuri paši par sevi ir samērā sarežģīti bioloģiski objekti. Liels skaits apvienotu neironu pamato dzīvnieku sarežģīto uzvedību. Šajā darbā apskatītie mākslīgie neironu tīkli ir daudz vienkāršāki un labāk izpētīti. Bet tomēr, tie ir spējīgi atrisināt dažus pietiekami sarežģītus uzdevumus - atpazīt audio un vizuālos tēlus, aproksimēt funkcijas, veikt dažu veidu prognozes un vadīt.
Pētījumi mākslīgo neironu tīklu sfērā pārdzīvojuši trīs aktivācijas periodus. Pirmo uzplaukumu 40.gados izraisīja MakKaloka un Pitsa pionieru darbs. Otrais bija 60.gados, balstoties uz Rozenblata perceptrona tuvinājuma teorēmu un Minska ‑ Peiperta darbu, kurš norādīja vienkāršākā percetrona ierobežotās iespējas. Minska ‑ Peiperta rezultāti noslāpēja tā pētnieku vairuma entuziasmu, kuri strādāja skaitļošanas zinātņu jomā. Radies klusums ilga gandrīz 20 gadus. No 80.gadu sākuma mākslīgie neironu tīkli no jauna piesaistīja pētnieku uzmanību. Verboss piedāvāja atgriezeniskās izplatības algoritmu daudzslāņu perceptrona apmācībai, kurš kļuva pazīstams 1986.gadā.
Uz šodienu eksistē divas pieejas realizējot mākslīgos neironu tīklus: aparāt­realizācija un programrealizācija. Daudzas pazīstamas firmas ražo elektroniskos kompo­nentus (mikroshēmas un veselas plates), kuras aparātlīmenī realizē mākslīgā neironu tīkla modeli. Pie otras pieejas, neironu tīklu modelē speciāla programma, kura darbojas uz parasta (iespējams, personālā) datora. Aparāt­nodrošinājuma un programnodrošinājuma tirgos eksistē pietiekami liels skaits neironu tīklu kā aparāt, tā arī programmemulatoru, bet tie visi izceļas ar savu augsto cenu, kas padara tos nepieejamus vairumam lietotāju.
Mūsdienās mākslīgie neironu tīkli tiek aktīvi izmantoti visās cilvēka darbības sfērās: militārajā, politikā, ekonomikā u.c.
Dotā darba mērķis ir apskatīt neironu tīklu funkcionēšanas principus, apskatīt to veidus, vairāku neironu tīklu modeļu izveidošana un apmācība, lai noskaidrotu to praktisko derīgumu atrisinot dažādus uzdevumus.
Galvenais dotā darba mērķis bija neironu tīkla izveidošana, kurš ir spējīgs funkcionēt uz spēcīga datora un tā apmācība atpazīt fjučersu tirgus trenda pagriešanos. Savlaicīga trenda pagriešanās atpazīšana ļauj izvēlēties visveiks­mīgāko biržas spēles stratēģiju un līdz ar to rast praktisku pielietojumu ekonomikas sfērā.
Ilgstošais evolūcijas periods cilvēka smadzenēm ir devis daudz īpašību, kuru nav nedz mašīnām ar fon Neimana arhitektūru, nedz arī mūsdienīgajiem paralēlajiem datoriem. Tās būtu:
masveida paralēlisms;
sadalīta informācijas un skaitļošanas attēlošana;
spēja mācīties un spēja vispārināt;
adaptivitāte;
spēja kontekstuāli apstrādāt informāciju;
tolerance pret kļūdām;
Var pieņemt, ka ierīcēm, kas uzbūvētas pēc tādiem pašiem principiem kā bioloģiskie neironi, piemitīs uzskaitītās īpašības.…

Autora komentārsAtvērt
Parādīt vairāk līdzīgos ...

Atlants

Izvēlies autorizēšanās veidu

E-pasts + parole

E-pasts + parole

Norādīta nepareiza e-pasta adrese vai parole!
Ienākt

Aizmirsi paroli?

Draugiem.pase
Facebook

Neesi reģistrējies?

Reģistrējies un saņem bez maksas!

Lai saņemtu bezmaksas darbus no Atlants.lv, ir nepieciešams reģistrēties. Tas ir vienkārši un aizņems vien dažas sekundes.

Ja Tu jau esi reģistrējies, vari vienkārši un varēsi saņemt bezmaksas darbus.

Atcelt Reģistrēties