Pievienot darbus Atzīmētie0
Darbs ir veiksmīgi atzīmēts!

Atzīmētie darbi

Skatītie0

Skatītie darbi

Grozs0
Darbs ir sekmīgi pievienots grozam!

Grozs

Reģistrēties

interneta bibliotēka
Atlants.lv bibliotēka
Akcijas un īpašie piedāvājumi 2 Atvērt
4,49 € Ielikt grozā
Gribi lētāk?
Identifikators:297424
 
Vērtējums:
Publicēts: 16.03.2006.
Valoda: Latviešu
Līmenis: Augstskolas
Literatūras saraksts: 3 vienības
Atsauces: Nav
SatursAizvērt
Nr. Sadaļas nosaukums  Lpp.
  Anotācija    3
  Darba uzdevums    4
  Sistēmas stabilitātes noteikšana pēc Rausa kritērija    5
  Rausa kritērija teoretiskais pamatojums.    5
  Praktiskā daļa    5
  Sistēmas stabilitātes noteikšana pēc Hurvica kritērija    7
  Hurvica kritērija teoretiskais pamatojums.    7
  Praktiskā daļa.    8
  Sistēmas stabilitātes noteikšana pēc Mihailova kritērija    10
  Mihailova kritērija teoretiskais pamatojums.    10
  Praktiskā daļa    11
  Sistēmas stabilitātes noteikšana pēc Naikvista kritērija    13
  Naikvista kritērija teoretiskais pamatojums.    13
  Praktiskā daļa.    13
  D – sadales metodes toeretiskā daļa    15
  Praktiskā daļa    15
  Secinājumi    20
  Literatūras saraksts    21
Darba fragmentsAizvērt

Vispirms apskatīsim stabilitātes nepieciešamo nosacījumu. Pieņemsim, ka slēgtas sistēmas raksturīgais vienādojums D(λ)=0 izvērstā veidā ir
a0 λ n + a1 λ n-1 +an=0 (1)

Pierādīsim, ka stabilitātes nepieciešamais nosacījums ir, lai visi raksturīgā vienādojums koeficienti būtu pozitīvi, tas ir:
a1>0, a2>0, ... , an-1>0, an>0, ja a0>0

Tam nolūkam vienādojums (1) kreiso pusi sadalīsim reizinātājos:
a0(λ- λ1) (λ- λ2) ... (λ- λn)=0, ja a0>0

Pieņemsim, ka visas saknes ir ar negatīvām reālām daļām
λ1=-|α1|, λ2,3=-| α1| ±jω, ... , λn=-| αn|

Ievietojot tās vienādojumā, iegūsim
a0(λ+|α1|)(λ+|α2|-jω2)( λ+|α2|+jω2) ... (λ+|αn|)=0

Tā kā vidējie divi reizinātāji ir vienādi ar
[(λ+|α2|)2+ω2]

tad redzams, ka sareizinot visas iekavas iegūsim tikai pozitīvus vienādojuma koeficientus.
Hurvica kritērija būtība ir sēkojoša: no pētāmā raksturīgā vienādojuma koeficientiem sastāda determinantu (Hurvica determinantu ∆n); pa galveno diagonāli raksta raksturīgā vienādojums koeficientus sakot ar a1 (polinoma n-1 kārta) līdz an; zem galvenās diagonāles elementiem raksta koeficientus indeksa samazināšanās virzienā; virs galvenās diagonāles raksta koeficientus indeksa pieaugšanas kārtībā; trūkstošo koeficientu vietās liek nulles.
Pēdējais Hurvica determinants , kā redzams no (2) ir
∆n=∆n-1 an
tas būs pozitīvs , ja ∆n-1>0, an>0

Pirmās un otrās kārtas sistēmām Hurvica stabilitātes kritērijs reducējās uz prasību, lai koeficienti a0, a1, a2 būtu lielāki par nulli. Trešās kārtas sistēmas raksturīgais vienādojums ir:
a0λ3 + a1λ2 + a2λ +a3 = 0

bet stabilitātes nosacījumi būs
∆n-1=∆2=a1a2-a0a3 > 0

Ja n≥5 stabilitātes nosacījumi kļūst sarežģītāki, tādēļ Hurvica kritēriju racionāli pielietot sistēmām, ja n≤4.
Mihailova kritērijs pēc būtības ir argumenta pieauguma principa ģeometriskā interpretacija. Dots slēgtas sistēmas raksturīgais vienādojums
D(λ)=a0 λ n + a1 λ n-1 +an=0 (1)

Lai sistēma būtu stabila, nepieciešams, lai visas raksturīgā vienādojuma saknes atrastos kreisajā pusplaknē, tas ir l=0. Šai gadījumā, atbilstoši vienādojumam
∆arg D(j ω)=π(m-l)=(n-2l) π

jāizpildās nosacījumam
∆arg D(j ω)=n π (2)


Vektora D(jω) galapunkta ģeometrisko vietu frekvencei mainoties no līdz sauc par Mihailova hodogrāfu. Atbilstoši vienādojumam (1), iegūsim
D(jω)=a0(jω)n+a1(jω)n-1+...+an= α(ω)+jβ (ω), kur

α (ω)=an-an-2 ω2+an-4 ω4-...
β(ω)=an-1ω-an-3ω3+an-5ω5-...…

Autora komentārsAtvērt
Parādīt vairāk līdzīgos ...

Atlants

Izvēlies autorizēšanās veidu

E-pasts + parole

E-pasts + parole

Norādīta nepareiza e-pasta adrese vai parole!
Ienākt

Aizmirsi paroli?

Draugiem.pase
Facebook

Neesi reģistrējies?

Reģistrējies un saņem bez maksas!

Lai saņemtu bezmaksas darbus no Atlants.lv, ir nepieciešams reģistrēties. Tas ir vienkārši un aizņems vien dažas sekundes.

Ja Tu jau esi reģistrējies, vari vienkārši un varēsi saņemt bezmaksas darbus.

Atcelt Reģistrēties