Pievienot darbus Atzīmētie0
Darbs ir veiksmīgi atzīmēts!

Atzīmētie darbi

Skatītie0

Skatītie darbi

Grozs0
Darbs ir sekmīgi pievienots grozam!

Grozs

Reģistrēties

interneta bibliotēka
Atlants.lv bibliotēka
14,20 € Ielikt grozā
Gribi lētāk?
Identifikators:771796
 
Autors:
Vērtējums:
Publicēts: 27.08.2019.
Valoda: Latviešu
Līmenis: Augstskolas
Literatūras saraksts: 5 vienības
Atsauces: Nav
SatursAizvērt
Nr. Sadaļas nosaukums  Lpp.
1.  VIENDIMENSIJAS DATU ANALĪZE    4
1.1.  Statistisko rādītāju noteikšana un sadalījumu raksturojums    4
1.2.  Datu kopas statistiskie rādītāji    8
1.3.  Datu sadalījums intervālos un histogrammas    10
1.4.  Atbilstošo normālā sadalījuma varbūtību blīvuma funkcijas vērtību aprēķināšana un grafika konstruēšana    13
1.5.  Ģenerālkopas vidējā lieluma reprezentācijas intervāls un hipotēzes pārbaude    14
1.6.  Logaritmiski normālā sadalījuma aprēķins un grafiskā interpretācija    18
1.7.  Veibula sadalījuma aprēķins un grafiskā interpretācija    19
2.  DIVDEMINSIJU DATU IZLASES ANALĪZE    21
2.1.  Pāru korelācijas analīze    21
2.2.  Regresijas analīze    32
  IZMANTOTIE INFORMĀCIJAS AVOTI    33
Darba fragmentsAizvērt

2. DIVDEMINSIJU DATU IZLASES ANALĪZE
2.1. Pāru korelācijas analīze
Jebkuru objektu raksturo īpašības. Šīs īpašības var izteikt gan kvantitatīvi gan kvalitātīti. Kvantitatīvi izsaka skaitliskā veidā, bet kvalitatīvi apraksta ar raksturīgām pazīmēm. Pazīmes vai īpašības var ietekmēt viena otru, bet ir gadījumi kad pazīmes vai īpašības neietekmē viena otru. Ja pazīmes vai īpašības neietekmē citas pazīmes, tad tās sauc par neatkarīgām pazīmēm, bet ja pazīmes savstarpēji ietekmē viena otru, tad tās sauc par atkarīgām. Ir sastopami divi pazīmju veidi:
• funkcionālas pazīmes;
• stohastiskas pazīmes.
Atkarība ir funkcionāla, ja vienas pazīmes vērtībām atbilst stingri noteiktas otras pazīmes vērtības. Biežāk ir sastopamais veids ir stohastiskā pazīme jeb korelācija - tāda atkarība, kurā kādas pazīmes katrai vērtībai iespējams atbilst vairākas citu pazīmju vērtības.
Izšķir divu veidu pazīmes:
• Rezultatīvā pazīme – tās skaitlisko vērtību variēšanu pēta atkarībā no citu pazīmju ietekmes (Y). Katra novērojuma skaitliskās vērtības – y1, y2, y3... .
• Faktoriālā pazīme – nosaka rezultatīvās pazīmes variēšanu (X). Katra novērojuma skaitliskās vērtības – x1, x2, x3... .
Pēc formas var izšķirt lineāru un nelineāru korelāciju. Lineārā korelācijā var novērot aptuveni vienādu faktoriālo un rezultatīvo pazīmju izmaiņu raksturu. Pozitīvā lineārā korelācijā palielinoties faktoriālās pazīmes vērtībām palielinās arī rezultatīvās pazīmes vērtības. Negatīvā lineārā korelācijā palielinoties faktoriālās pazīmes vērtībām rezultatīvās pazīmes vērtības samazinās.
6. tabulā redzama divdimensiju datu kopa, kas sastāv no 365 variantēm. Tika aprēķināti empīrisko noviržu kvadrāti, kā arī teorētiskie regresenti un standartnovirzes. Izmantojot funkciju COVARIANCE.S tika aprēķināts kovarācijas koeficents, kas ir primārais x un y atkarīgās variēšanas rādītājs COV(x;y) = 29.34.

Autora komentārsAtvērt
Parādīt vairāk līdzīgos ...

Atlants

Izvēlies autorizēšanās veidu

E-pasts + parole

E-pasts + parole

Norādīta nepareiza e-pasta adrese vai parole!
Ienākt

Aizmirsi paroli?

Draugiem.pase
Facebook

Neesi reģistrējies?

Reģistrējies un saņem bez maksas!

Lai saņemtu bezmaksas darbus no Atlants.lv, ir nepieciešams reģistrēties. Tas ir vienkārši un aizņems vien dažas sekundes.

Ja Tu jau esi reģistrējies, vari vienkārši un varēsi saņemt bezmaksas darbus.

Atcelt Reģistrēties