Pievienot darbus Atzīmētie0
Darbs ir veiksmīgi atzīmēts!

Atzīmētie darbi

Skatītie0

Skatītie darbi

Grozs0
Darbs ir sekmīgi pievienots grozam!

Grozs

Reģistrēties

interneta bibliotēka
Atlants.lv bibliotēka
  • Standartizēts normālais sadalījums. Normālā sadalījuma lietošana - netiešie uzdevumi: dotas varbūtības uzdevums. Hipotēze par relatīvajiem biežumiem

     

    Konspekts10 Matemātika

5,99 € Ielikt grozā
Gribi lētāk?
Identifikators:688081
 
Autors:
Vērtējums:
Publicēts: 25.05.2004.
Valoda: Latviešu
Līmenis: Augstskolas
Literatūras saraksts: Nav
Atsauces: Nav
SatursAizvērt
Nr. Sadaļas nosaukums  Lpp.
1.  Normālais sadalījums    2
1.1.  Normālā sadalījuma funkcijas un grafiskie attēli    2
1.1.1.  Diferenciālā un integrālā funkcija, to grafiskie attēli    2
1.1.2.  Normālā sadalījuma parametri    3
1.1.3.  Standartizēts normālais sadalījums    4
1.2.  Normālā sadalījuma lietošana    6
1.2.1.  Netiešie uzdevumi: dotās varbūtības intervāls    6
2.  Hipotēze par relatīvajiem biežumiem    9
2.1.  Nulles hipotēzes pārbaude par divu relatīvo biežumu starpību    9
2.2.  Relatīvā biežuma vērtēšana    10
2.3.  Relatīvā biežuma vērtēšana ja tas izlasē ir ļoti mazs vai ļoti liels skaitlis    11
Darba fragmentsAizvērt

Normālajam sadalījuma likumam visās dabaszinātnēs ir fundamentālā nozīme, tai skaitā arī fizikā. Pats vispārinātākais normālā sadalījuma likuma raksturojums ir vienkāršs tāda likumsakarīga fakta novērojums, ka ļoti liels centrālās novirzes (Xi – M(x)) sastopamas ļoti reti, bet mazas bieži, pie kam pēc moduļa vienādas novirzes ir vienādi iespējamas. Tāda likumsakarība iespējama apstākļos, kad uz gadījuma lielumu X iedarbojas liels skaits visdažādāko faktoru, un katra šāda faktora iedarbības daļa ir vienādi maza salīdzinājumā ar to skaitu.
Normālā sadalījuma funkcijas un grafiskie attēli
Diferenciālā un integrālā funkcija, to grafiskie attēli
Dabas un sociālajās zinātnēs pētāmie objekti un parādības parasti veido sadalījumus ar izteiktu vienību koncentrāciju sadalījuma centrā. Izdarot grupēšanu pēc pētāmās pazīmes un izgatavojot tam atbilstošo stabiņu diagrammu (histogrammu), iegūstam raksturīgu piramīdveida figūru. Ja novērojumu skaits ir liels un grupēšanas intervāli mazi, šī piramīda tuvojas īpašai figūrai, ko ierobežo zvanveida līkne, t.s. Gausa līkne. Tas ir normālā sadalījuma diferenciālās funkcijas grafiskais attēls (skat. 1.1. attēlu). Tātad normālais sadalījums ir robeža, uz kuru teicas daudzi empīriskie sadalījumi. Normālo sadalījumu var uzlūkot par šo empīrisko sadalījumu matemātisko modeli.
Empīriskā sadalījuma uzkrāto biežumu stabiņu diagrammas virsotnes, savukārt, labi apraksta īpaša S veida līkne, kas ir normālā sadalījuma integrālā funkcija (1.2. attēls).
Normālā sadalījuma likumam ir fundamentāla nozīme dažādu mērījumu un citu kvantitatīvu novērojumu kļūdu izvērtēšanā.
Normālā sadalījuma funkcijās ir divi parametri, skaitliskas konstantes, kas dažādos uzdevumos ir dažādi.
1.x – gadījumlieluma vidējā vērtība (uzdevuma robežās konstante; dažādos uzdevumos dažādi lielumi).
2.S – gadījumlieluma standartnovirze (uzdevuma robežās konstante, dažādos uzdevumos dažādi lielumi).…

Autora komentārsAtvērt
Darbu komplekts:
IZDEVĪGI pirkt komplektā ietaupīsi −3,98 €
Materiālu komplekts Nr. 1137825
Parādīt vairāk līdzīgos ...

Atlants

Izvēlies autorizēšanās veidu

E-pasts + parole

E-pasts + parole

Norādīta nepareiza e-pasta adrese vai parole!
Ienākt

Aizmirsi paroli?

Draugiem.pase
Facebook

Neesi reģistrējies?

Reģistrējies un saņem bez maksas!

Lai saņemtu bezmaksas darbus no Atlants.lv, ir nepieciešams reģistrēties. Tas ir vienkārši un aizņems vien dažas sekundes.

Ja Tu jau esi reģistrējies, vari vienkārši un varēsi saņemt bezmaksas darbus.

Atcelt Reģistrēties