Neironu tīkli - tie ir skaitļošanas modeļi, kuri balstās principiem, līdzīgiem smadzeņu uzbūves principiem, un kuri paredzēti smadzeņu risināmo problēmu atrisināšanai. Zīdītājiem bioloģiskie neironu tīkli ir formēti no neironiem, kuri paši par sevi ir samērā sarežģīti bioloģiski objekti. Liels skaits apvienotu neironu pamato dzīvnieku sarežģīto uzvedību. Šajā darbā apskatītie mākslīgie neironu tīkli ir daudz vienkāršāki un labāk izpētīti. Bet tomēr, tie ir spējīgi atrisināt dažus pietiekami sarežģītus uzdevumus - atpazīt audio un vizuālos tēlus, aproksimēt funkcijas, veikt dažu veidu prognozes un vadīt.
Pētījumi mākslīgo neironu tīklu sfērā pārdzīvojuši trīs aktivācijas periodus. Pirmo uzplaukumu 40.gados izraisīja MakKaloka un Pitsa pionieru darbs. Otrais bija 60.gados, balstoties uz Rozenblata perceptrona tuvinājuma teorēmu un Minska ‑ Peiperta darbu, kurš norādīja vienkāršākā percetrona ierobežotās iespējas. Minska ‑ Peiperta rezultāti noslāpēja tā pētnieku vairuma entuziasmu, kuri strādāja skaitļošanas zinātņu jomā. Radies klusums ilga gandrīz 20 gadus. No 80.gadu sākuma mākslīgie neironu tīkli no jauna piesaistīja pētnieku uzmanību. Verboss piedāvāja atgriezeniskās izplatības algoritmu daudzslāņu perceptrona apmācībai, kurš kļuva pazīstams 1986.gadā.
Uz šodienu eksistē divas pieejas realizējot mākslīgos neironu tīklus: aparātrealizācija un programrealizācija. Daudzas pazīstamas firmas ražo elektroniskos komponentus (mikroshēmas un veselas plates), kuras aparātlīmenī realizē mākslīgā neironu tīkla modeli. Pie otras pieejas, neironu tīklu modelē speciāla programma, kura darbojas uz parasta (iespējams, personālā) datora. Aparātnodrošinājuma un programnodrošinājuma tirgos eksistē pietiekami liels skaits neironu tīklu kā aparāt, tā arī programmemulatoru, bet tie visi izceļas ar savu augsto cenu, kas padara tos nepieejamus vairumam lietotāju.
Mūsdienās mākslīgie neironu tīkli tiek aktīvi izmantoti visās cilvēka darbības sfērās: militārajā, politikā, ekonomikā u.c.
Dotā darba mērķis ir apskatīt neironu tīklu funkcionēšanas principus, apskatīt to veidus, vairāku neironu tīklu modeļu izveidošana un apmācība, lai noskaidrotu to praktisko derīgumu atrisinot dažādus uzdevumus.
Galvenais dotā darba mērķis bija neironu tīkla izveidošana, kurš ir spējīgs funkcionēt uz spēcīga datora un tā apmācība atpazīt fjučersu tirgus trenda pagriešanos. Savlaicīga trenda pagriešanās atpazīšana ļauj izvēlēties visveiksmīgāko biržas spēles stratēģiju un līdz ar to rast praktisku pielietojumu ekonomikas sfērā.…